
-T.,
w

?/_/.3

Knowledge-Intensive Software Design Systems:
Can too much knowledge be a burden?

Richard M. Keller

Technical Repon FIA-92-11
April 1992

(_'AqA-TM-I07o_ 3) KNOWLFOC, E- INTENq IVE

SnFTWARE DESIGN SYSTEMS: CAN lot) MUCH

K_:]WLEOGE BE A BURDEN? (NASA) 8 p

G3161

NQ2-25_49

Unclas

0091513

Ames Research C¢_ ter

"N

gence Research Br_nch

94035-1000

REPORT DOCUMENTATION PAGE OMBNo.0704-0188

I o _l • ,_r'_ n._ burden for this _ollecti<_n of nformatl_r .s _'_t matpd to average 1 hour per r_'s_nse including the time for reviewing instructions, searching existing data source'S.

-_:'J _ ^,.,_,n_tl_,_tan_,_e d andcomoletna'_ndre_ewm<_thecollec,ionofin_formatiOn Send comments regarding this burden estimate or any other aspect of _ts

_,tt_cet,'or _ o_?YnTo_=a_iOn _,nciuding su_gc_t;ons for r;ducing <this burden t'o _Nash,ngton Headquar'<ers Serv,ces. Directorate for Information Operations and Repots.12 lS Jeffer,-.on

Davis Highway. Suite 1204, Arhngton, '¢_, 22202-4302. and to the Office of Management and Budget, Paperwork. fleductton Project (0704-01B8), Wasmngton, ut. zu_ua.

1. AGENCY USE ONLY(Leave blank) _ REPORT DATE
Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

3. REPORT TYPE AND DATES COVERED

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Available for Public Distribution

13. ABSTRACT (Maximum 200 words)

12b, DISTRIBUTION CODE

Abstracts ATTACHED

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z3g-18

298-102

To appearintheWorkin8 NotesoftheAAAI-92Workshop on AutomatingSoftwareDeaign,San Jose,CA, July12,1992

Knowledge-Intensive Software Design Systems:
Can too much knowledge be a burden?

Richard M. Keller

Sterling Software
NASA Ames Research Center - Artificial Intelligence Research Branch

Mail Stop 269-2, Moffett Field, CA 94035-1000

(415) 604-3388 (Phone); 604-3594 _AX); Kelle_ptolemy.arc.nasa.gov

Abstract

While acknowledging the considerable benefits of domain-specific, knowledge-intensive
approaches to automated software engineering, it is prudent to carefully examine the costs
of such approaches, as well. In adding domain knowledge to a system, a developer makes
a commitment to understanding, representing, maintaining, and communicating that
knowledge. This substantial overhead is not generally associated with domain-
independent approaches. In this paper. I examine the downside of incorporating additional
knowledge, and illustrate with examples based on our experience building the SIGMA
system. I also offer some guidelines for developers building domain-specific systems.

1. Introduction

One of the long-prevailing tenets of artificial intelligence
research is that "knowledge is power" -- the more
knowledge made available to a system, the better. The
knowledge-based software engineering (KBSE)
community, as evidenced by its serf-designation, embraces
this philosophy no less than other disciplines within AI.
Traditionally, the knowledge represented and used by
practitioners of KBSE has been knowledge about the
programming discipline, itself. Increasingly. however,
researchers are recognizing the utility of representing and
using knowledge about the target programming domain
(e.g., business, manufacturing, science.
telecommunications, engineering, etc.) to facilitate
automation of various facets of the software e_gineering
process [1,2,3]. In fact, the seductive "knowledge is
power" maxim has even found a receptive a_iience in the
mainsuream software engineering community, where
several workshops on the topic of "Domain Modeling"
have been held over the pest few years [4].

The migration toward domain-_c systems comes as

no great surprise. Despite progress in developing general-
purpose methods for anmmated software engineering [5],
the practical application of these techniques has met with
limited success. In some cases, these methods have failed

to scale up appropriately; in other cases, the methods
have proven too mathematically-sophisticated to appeal
widely to the practicing community of software engineers.
However, by incorporating additional domain knowledge
and constraints, it becomes possible to specialize and
simplify these methods to a point where they are more
tractable and less daunting to apply. While
acknowledging the considerable benefits of domain-
specific, knowledge-intensive approaches to automated
software engineering, it is prudent to carefully examine
the costs of such approaches, as well. In adding domain
knowledge to a system, a developer makes a commitment
to understanding, representing, maintaining, and
communicating that knowledge. This substantial
overhead is not generally associated with domain-
independent approaches. In this paper. I examine the
downside of incorporating additional knowledge, and
question whether adding knowledge introduces as many
new Im3blems as it solves.

Over the past several years, I have been involved in the
development of a domain-specific software design system
for scientific modeling. To ground my remarks. I will
briefly describe this system and its knowledge
requirements.Then Iwilldescribesome of the additional
burden placed on the developers as a result of the
knowledge-intensive nature of this system. Finally, I will
attempt to generalize from our experience and present
some guidelines and caveats for others developing domain-

KBSE symms.

2. SIGMA : A knowledge-based
scientific software environment

The goal of the SIGMA project [6] is to provide

computational support for scientists engaged in computer
modeling and simulation of physical systems. Examples
of such systems include planetary atmospheres, forest
ecosystems, and biochemical systems. Generally, these
systems can be modeled as a set of algebraic and ordinary
differential equations, where the terms in the equations
interrelate the physical quantities of interest. Although
computer models play a crucial role in the conduct of
science today, scientists lack adequate software engineering
tools to facilitate the conslruction, maintenance, and reuse

of modeling software. Usually, scientific models are
implemented using a general-purpose computer
programming language, such as FORTRAN. Because
this type of general-purpose language is not specifically
customized for scientific modefing problems, the scientist

is forced to translate scientific constructs into general-
purpose programming constructs. This manual
translation process can be very complicated, labor-
intensive, and error-prone. Furthermore, the wanslation
process obfuscates the original scientific intent behind the
model, and buries important assumptions in the program
code that should remain explicit. The resulting software
is typically complex, idiosyncratic, and difficult for
anyone but the primary scientific author to understand.

We are building a knowledge-based software environment
that makes it easier for scientists to construct, modify, and
share scientific models. The SIGMA (Scientists"

Intelligent Graphical Modeling Assistant) system

functions as an intelligent assistant to the scientist.
Rather than construct models using a conventional
programming language, scientists will be able to use
SIGMA's graphical interface to "program" visually using
a more natural high-level graphical data flow modeling
language. The terms in this modeling language denote
scientific concepts (e.g., physical quantifies, scientific
equations, and datasets) rather than general programming
concepts (e.g., arrays, loops, counters). The scientist-user
interacts with the system to construct a syntactically and
semantically valid data flow graph, such as the one
illustrated in Figure 1. In this graph, the lettered nodes
represent scientific quantities, such as temperature,
pressure, and density. These quantities are input to
scientific equations (depicted by numbered nodes in Figure
1) which calculate output quantities.

The data flow graph in Figure 1 represents part of a
planetary atmospheric model developed at NASA Ames
Research Center [7]. The model computes the temperature
(13 at some altitude point above a planetary surface based

on input data (r) measuring the extent to which a radio
signal refracts upon penetrating the atmospheric gases at
that altitude.

Although visually simple, the graph masks a number of
non-lrivial technical problems that must be addressed to
actually execute the corresponding program. For example,
the input refractivity value is a vector quantity, not a
scalar, so there is an implicit iteration being performed.
Note also that Equation # 4 is a differential equation that
must be numerically integrated to solve for P. In
addition, the scientific units specified for the various
inputs to an equation may not be compatible and must be

r : :

® ,,- ® -pg

Figure 1: Data flow graph representing a portion of a planetary atmosphe_rie model. _ represent physical quantities.
Numbered circles coaesixmd to equation application nodes.

2

convened to a common unit system befoce that equation
can be applied. $IGMA's interpreter handles these delails
automatically for the use_.

makes extensive use of scientific domain knowledge to aid
in the program synthesis process. The next section
describes SIGMA's domain knowledge.

On the surface, SIGMA appears similar to a large class of
data flow based visual programming environments that
have been developed recently. These systems help users
graphically cons_uct software in a variety of application
areas, including image processing and scientific
visualization (Khoros/Cantata [8], lconicode/IDF [9],
AVS [10], ape [11]), scientific instrument design
(LabVIEW [12]), and simulation (S_ [13],
Extend [14]). In all of these cases, however, the software
tool has fairly limited knowledge of the application
domain. Although the tools enforce simple syntactic
checks on the data flow graphs and perform some type-
checking, none of these tools has a deep semantic
understanding of what the data flow program is doing and
whether the operations on the data make sense. As a
result, it is possible with these tools to create a
syntactically valid flow graph that is semantically
meaningless to a domain specialist. In contrast. SIGMA
assists the scientist during the model-building process and
checks the model for consistency and coherency as it is
being constructed. In particular, SIGMA's domain
knowledge assists the system in interpreting the user's
intentions and in constructing a semantically meaningful
program.

SIGMA is closer in spirit to _0 [15]. _b0is a domain-
specific automatic programming system constructed to
assist in generating off well log interpretation softwa_'e.
The system was designed for direct use by petroleum
scientists, who would use it to construct geological
models expressed as a set of quantitative equations relating
geological parameters of interest. Like SIGMA, _0

3. SIGMA's Domain Knowledge

SIGMA's domain knowledge is represented and stored in a
hierarchically-structured, frame-based knowledge base of
over 500 concepts which contain information about
scientific equations, physical quantifies, scientific units,
numerical programming methods, scientific domain
concepts, and bibliographic citations. A partial overview
of the knowledge base is depicted in Figure 2.

SIGMA's knowledge can be partitioned into four
catega_

. Cross-disciplinary scientific knowledge:
General knowledge available to persons with a
scientific background, including knowledge about
various physical quantities, scientific domain
objects, scientific measure units, foundational
equations, and scientific handbook data.

. Area-specific scientific knowledge:
Quantities, domain objects, equations, and data
pertaining to a specific scientific discipline (e.g.,
biology, ecology, physics).

, Problem -specific knowledge: Domain
objects and relations pertaining to the specific
physical system being modeled by the scientist.

SIGMAKnowledgeBase I)ataflow/

/ / X \ \ '""

• ,_, /1__ Obj_ rh,_ \ \ 1

phyiic_ 1_lion 1=7- I1:,'_,, - u_ \, ,

Hg_rc 2: Overview of SIGMA's knowledge base

. Programming knowledge: Knowledge about
numerical programming methods, data structures,
conmal, etc. (In the current version of SIGMA,
much of this knowledge is implicit in the data flow
interpreter.)

Although a detailed discussion of SIGMA's knowledge
base and representational structures is outside the scope of
this paper, I will briefly describe one of the key elements:
SIGMA's equation representation.

Each SIGMA equation consists of a syntactic equation
formula plus a semantic interpretation for each of the
symbols in the formula. Each symbol is identified with
an attribute of some class of domain objects in SIGMA's
knowledge base. The domain objects associated with the
various equation symbols are constrained to obey specified
relationships among each other. Consider Figure 3,
which illustrates how Equation 1 of Figure 1 is
represented internally within SIGMA. Equation 1 states
that the number density (n) of a gas mixture (i.e., the
number of particles per volume of mixture) is equal to the
refractivity index (r) of the entire mixture divided by a
weighted sum of the refractivity indices (rg) of the
individual gases within the mixture.

As shown in Figure 3, the semantics of this equation are
represented in terms of the domain objects that the
equation interelates, namely the gas mixture (called an
atmospheric-parcel), the homogeneous pure-gas
subcomponents of the mixture (called constituents), and
the individual gases that are included in the mixture. The
symbols "r" and "n" in the equation are linked to the
refractivity and number-density attributes of the same
atmospheric-parcel. The subscript "g" is identified with

the constituents attribute of that same atmospheric-parcel.
The constituents attribute stores a pointer to each
constituent within the atmospheric-parcel. The symbol

"fg" is linked to the mixing-fraction of a constituent, and
stores the percentage of this constituent as a fraction of
the total quantity of gas within the atmospheric-parcel.
The symbol "rg" represents the refractivity attribute of a
gas that is contained by the constituent. Finally '%"
refers to a physical-coustant called Loschmidt's Number.

In essence, this representation provides a set of domain
constraints that must be satisfied for the equation to apply
legitimately in a given domain situation. As a scientist
builds up a data flow graph such as the one in Figure I,
he or she is unknowingly constructing an invisible
constraint network of domain objects and relations similar
to the one illustrated in Figure 3. This constraint network
provides a sound semantic interpretation for the graph.

4. SIGMA's Knowledge Burden

The rationale behind our decision to invest considerable

time and energy into representing domain knowledge for
SIGMA is simple and, we believe, compelling: How can
a machine interact intelfigently and synergistically with a
scientist to create modeling software if the machine has no
understanding of the scientific problem under study.'?
Without this shared understanding, SIGMA would have to
rely on user guidance for many of the functions it now
performs automatically. Our users have expressed an
impatience with systems that need to be "spoon-fed";
given an option, they would rather drop down into
FORTRAN and code the model themselves! Our only
alternative, it seems, is the knowledge-intensive route.

Figure 3: Representation for Equation 1 in Figure 1.

TheCatch-22in thissituation is that the addition of
domain knowledge imposes burdens on the developer,
maintainer, and users of the interactive software design
system:

• The Comprehension Burden: System developers
must analyze and understandthe application domain
and the class of problems to be solved.

Our experience with SIGMA is that a significant
amount of time (several person-months of effort) is
required to sufficiently understand the scientific
modeling problems presented by our collaborators
in planetary and ecosystem sciences. Of cotuse the
difficulty is a function of many variables, including
the developer's prior background knowledge and
experience in the application domain, the caliber of
expert advice and guidance, the complexity of the
scientific modeling problem, etc.

convey the system's knowledge to the user, and
vice versa.

Consider once again SIGMA's equation
representation. It is non-trivial to convey this type
of a representation scheme to a naive user without
exposure to knowledge-based or object-oriented
techniques. Building an adequate user-friendly
editor for SIGMA will be a challenging (and no
doubt time consuming) task. Navigating and
editing the concepts in the knowledge base pose
similar difficulties.

Although these problems are significant, most of them are
pose no greater or lesser challenge than those faced by
developers, maintainers, and users of any sophisticated
knowledge-based system. Software engineering, after all,
is just another application area for knowledge-based
techniques.

• The Representation Burden: Developers must
design suitable representations to capture the
knowledge. 5. Easing the Burden

In our experience, the problem of representing
domain knowledge is a significant modeling
problem in itself. Within SIGMA, we have
identified a need for representing quantifies,
quantitative and qualitative relationships, pan-
whole and subsumption relationships, temporal and
spatial relationships, modeling assumptions, and
other difficult representational constructs. A
comprehensive treatment of all of these issues is
beyond the scope of any single project (However,
see [16] for an ambitious effort in this vein.)

Despite the extra effort involved, and the new problems
introduced, I still believe it is worth the effort to
incorporate domain knowledge as an integral part of an
automated software engineering environment. I believe
the newly-introduced problems are challenging, but
tractable. And without incorporating additional
knowledge, I see no way to provide more intelligent and
domain-sensitive tools to practitioning software engineers.
In this spirit of pragmatism, I offer the following
recommendations to those building knowledge-intensive,
domain-specific tools:

• The Maintenance Burden: System maintainers
or users must add new knowledge, update old
knowledge as it becomes outdated, and generally
maintain the integrity of the knowledge base.

For example, novice and intermediate SIGMA users
witl want to enter new equations and new physical
quantities into the system. Sophisticated SIGMA
users may wish to modify the original domain
theot'y that was captured and encoded as a by-
product of discussions with our expert
collaborators. In fact, the domain theory (i.e., the
domain objects, attributes, and relations) is as
much a part of the scientist's model as the
equations. Because the equations are intimately
linked to the underlying domain theory (as
discussed in Section 3), entering a new equation is
complicated, and modifying the domain theory has
wide-ranging implications. As a result, the current
version ofSIGMA does not permitusersto modify

domainthen .

• The Communication Burden: Developers must
implement tools and techniques that adequately

• Generality: Keep the knowledge base and the
representations general, without going overboard.
This will facilitate entry ofnew information into
theknowledge base,and encomagereuseofexisting
knowledge and representational constructs in new,
similar domains.

• Stability: Choose an application for which the
domainknowledge isrelatively stable. This will
minimize the maintenance burden.

• Scope: Choose an application for which knowledge
is well-circumscribed,yet broad enough to make
the endeavor worth your effort. If the knowledge
can be reused in other applications, the
development costs can be amortized over a shorter
period of time.

• Content: Choose an application for which the
domain theory is well-understood and commonly
accepted. This will simplify the process of
building an acceptable domain theory and reduce
maintenance and commtmicafioa costs.

• Terminology:Usevocabularythat is as familiar as
possible to users. This will ease the
communication burden.

• Grainsize: Avoid modeling phenomena in more
detail than necessary for the task -- unless
warranted due to generality and subsequent
reusability.

Of course the developers of software systems do not
always have control over the selection of an application
domain. In this case, the above recommendations can be
used to evaluate the suitability of domain-specific
approaches with respect to a particulardomain.

6. Conclusion

Yes, I still believe in the "knowledge is power" axiom.
But more than ever, I feel it is important to heed its most-
overlooked corollary: "There is no such thing as a free
lunch". Caveat emptor[

Acknowledgments

Thanks to the SIGMA group, and _ially to Michal
Rimon, who implemented the current version of our
system. Thanks also to Pandu Nayak who provided us
with his RML representation language.

References

[l] D.Barstow, "Domain-Specific Automatic
Programming", IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, pp. 1321-1336,
Nov. 1985.

[2] E.Kant' F.Daube, W.MacGregor, and J.Wald,
"Scientific Programming by_=Automated
Synthesis", in AuWmating Software Deign, pp.
169-206, M.R.Lowry and R.D.McCanney (eds.),

Press,MenloPark,CA, 1991.

[3] D.Sediff, "On the Automatic Selection of Data
Suea_ and Algorithms',in Auzoma_ng Software
Design, pp. 207-226, M.R.Lowry and
R.D.McCurmey (eds.), AAAI Press, Menlo Park,
CA, 1991.

[4] N.Iscoe, "Domain Modeling -- Evolving
_'.Proc. Siztk Annual Knowledge-Based

 -yi: t.kaif irist pp. t.236,
IEEE Compmer Society Press, Los Ala_tos, CA,
1991.

[5]

[6]

[7]

[8]

[9]

[IO]

[11]

[121

[13]

[14]

[15]

[16]

6

M.R.Lowry and R.Duran, "Knowlodge-Based
Software Engineering", chapter in Handbook of
Artificial Intelligence, Vol. IV, A.Barr and
P.Cohen (eds.), Addison-Wesley, New York, 1989.

R.M.Keller and M.Rimon, "A Knowledge-based
Software Development Environment for Scientific
Model-building", AI Research Branch technical
report #FIA-92-12, NASA Ames Research Center,
Moffett Field, CA, forthcoming July 1992.

C.P.McKay, J.B.Pollack, and R.Courtin, "The
Thermal Structure of Titan's Atmosphere", Icarus,
vol. 80, pp. 23-53, 1989.

Khoros/Cantata software product, Khoros
Consortium, EECE Department, University of
New Mexico,Albuquerque, NM.

Iconicode and IDF software products, Iconicon,
Palo Alto, CA.

AVS software product, Stardent Computer, Inc.,
Sunnyvale, CA.

ape 2.0 software product, Ohio Supercomputer
Center, Columbus, OH.

LabVIEW software product, National Instruments,
Austin, TX.

STELLA and IThink software products, High
Peffonnunce Systems, Lyme, NIL

Extend software product, Imagine That, Inc., San
Jose, CA.

D. Barstow, R. Duffey, S. Smoliar, and S. Vestal,
"An Overview of _nix', in Proc. National
Conference on Artificial Intelligence (AAAI-82),
pp.367-369, Pittsburgh, PA, August 1982.

R.V.Ouha and D.B.Lenat' "Cyc: A Mid-Term
Rep_", AI Magazine, 11(3), 1990.

